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1 Solutions to Hamilton-Jacobi Equations via Calculus of
Variations

1.1 Recap: Connecting Hamilton-Jacobi equations to calculus of varia-
tions using the Legendre transform

Last time, we wanted to compare Hamilton-Jacobi equations to calculus of variations. The
Hamilton-Jacobi equations are of the form{

ut + H(x, ∂u) = 0 in R× Rn

u(0) = u0 in R.

The characteristics given to this equation are
ẋ = Hp

ṗ = −Hx

ż = p ·Hp −H,

with initial data x(0) = x0 and p(0) = ∂u0. The first two equations are called the Hamil-
ton flow.

In calculus of variations, we have a Lagrangian L : Rn × Rn → R, and we want to
minimize an action functional

min
x∈A

∫ T

0
L(x, ẋ) dt︸ ︷︷ ︸
L(x)

,

where A = {x : [0, T ] → R Lipschitz | x(0) = x0, x(T ) = xT }. Minimizers satisfy the
Euler-Lagrange equation

Lx(x, ẋ)− d

dt
Lq(x, ẋ) = 0.

Last time, we connected these two setups. We saw that
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• L is strictly convex and coercive if and only if H is strictly convex and coercive.

•
H(x, p) = max

q∈Rn
−L(x, q) + p · q,

which is maximized at p = Lq(x, q). This relation gives

H(x, p) + L(x, q) ≥ p · q

with equality when p = Lq(x, q). This expression is symmetric in p and q, so it allows
us to cast q in terms of p: q = Hp(x, p). This relationship is known as the Legendre
transform.

Remark 1.1. The Legendre transform well-defined and is an involution, only assuming
convexity.

Example 1.1. If we remove strict convexity and coercivity, we can get functions which
are not defined everywhere. For example, take{

L(0) = 0

L(q) =∞ q 6= 0.

What is H in this case?

We have not incorporated the initial data of the Hamilton-Jacobi equations into our
calculus of variations. We will do this by adding u0(x0) to the minimization problem (so
when T = 0, we get u0(x0)) and removing the condition x(0) = x0 from our set A. So we
are minimizing

min
x∈A

∫ T

0
L(x, ẋ) dt + u0(x0) = u(T, xT ),

with A = {x : [0, T ]→ R Lipschitz | x(T ) = xT }.

1.2 Existence of minimizers for the Euler-Lagrange equation

We want to prove the following:

Theorem 1.1. The minimal value function u(T, xT ) in the calculus of variations is the
solution to the Hamilton-Jacobi equations.

First, we should ask: Does a minimum solution to the Euler-Lagrange equation exist?
The answer is yes, as long as L is convex, coercive, and Lipschitz in x and if u0 ∈ Lip.
However, there is no guarantee of uniqueness. We will not prove this, but here is some
intuition:

Here is the trivial case:
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Proposition 1.1. Suppose we have a continuous function F : K → R with K compact.
Then minF is attained.

Proof. Let xn be a minimizing sequence: F (xn) → inf F . Then xn → x0 along a subse-
quence. Then F (xn)→ F (x0), so x0 is the minimizer.

What if we try to apply this to calculus of variations? Suppose we have a minimizing
sequence xn : [0, T ] → Rn. Then L(xn) → u(T, xT ) but in what topology? Is xn in a
bounded set? We know that L(xn) is bounded. If L(x, q) = q2, for example, we could

conclude that
∫ T
0 (ẋn)2 ≤ c. Then ẋn is bounded in L2([0, T ]). This would imply that xn

is bounded in C1/2 using Hölder’s inequality: (|xn(t) − xn(s)| ≤ c|t − s|1/2). This implies
that xn is equicontinuous (and equibounded by the x(T ) = xT assumption). So the Arzelà
Ascoli theorem says that xn → x uniformly. Then

lim
n→∞

L(xn) = lim
n→∞

∫ T

0
L(xn, ẋn) dt + u(xn,0)︸ ︷︷ ︸

→u0(x0)

We can pass to the limit without a problem for x, but convergence with respect to ẋ is
trouble.

The limit of the integral may not exist, but maybe we can hope for∫ T

0
L(x, ẋ) dt ≤ lim inf

n→∞

∫ T

0
L(xn, ẋn) dt.

This is lower semicontinuity for the map x 7→ L(x). The key observation is that convexity
of L implies lower semicontinuity of L:

Proof. The convexity inequality tells us that

L(ẋn) ≥ L(ẋ) + Lq(ẋ)(ẋn − ẋ).

Integrating gives us ∫ T

0
L(ẋn) dt ≥

∫ T

0
L(ẋ) dt +

∫ T

0
Lq(ẋ)(ẋ− ẋn) dt

We are done if limn→∞
∫
Lq(ẋ)(ẋn − ẋ) = 0. We have replaced our nonlinear dependence

on ẋn − ẋ by a linear property.
Since ẋ ∈ L2, we can approximate Lq(ẋ) by smooth functions. Suppose yk ∈ C∞ with

yk → L(ẋ) in L2. It is enough to see that

lim
n→∞

∫ T

0
yk(ẋn − ẋ) dt = 0
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In this context, we can integrate by parts. The integral equals∫ T

0
yk(ẋn − x) dt =

∫ T

0
ẏk(xn − x) dt + yk(xn − x)|T0

n→∞−−−→ 0

by uniform convergence of xn → x.

Example 1.2. Recall our double well potential.

In this case, if xn is a wiggle approximating the 0 trajectory, we have L(ẋn) = 0 by
L(ẋ) = L(0) > 0.

Remark 1.2. The Hamilton-Jacobi equation can be solved for a short time using charac-
teristics. In calculus of variations, the analogue turns out to be that minimizers are unique
for a short time.

We want to think of two minimizers in calculus of variations as characteristics that
intersect.
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1.3 Proving that Euler-Lagrange equation minimizers solve Hamilton-
Jacobi equations

Here is the “proof” of our theorem.

Proof. Suppose x is a minimizer for the action functional. We can choose a intermediate
point t, and first minimize relative to the time t.

min
x

∫ T

0
L(x, ẋ) dt + u0(x0) = min

x

∫ t

0
L(x, ẋ) ds + u0(x0) +

∫ T

t
L(x, ẋ) ds

If x|[0,T ] is a minimizer, then x|[0,t] is also a minimizer. So

u(xT , x0) = minu(xt, x0) +

∫ T

t
L(x, ẋ) ds.

This is called the dynamic programming principle.1 This principle tells us that for
minimizers,

u(xT , x0) = u(xt, x0) +

∫ T

t
L(x, ẋ) ds,

which we can differentiate with respect to t to get

d

dt
u(xt, x0) = L(x, ẋ)

= p · q −H(x, p)

= p ·Hp −H.

We conclude that u(t, xt) from the calculus of variations is the same as the u(t, xt) from
the Hamilton-Jacobi equation because they solve the same equation with the same initial
data at time 0.

1This is discussed near the end of Evans’ book.
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Remark 1.3. This is not an entirely correct proof. How do we know that there is an
optimal trajectory starting at x0? If the time is short enough, we can guarantee a minimizer
starting at x0, but this is exactly the issue of uniqueness of minimizers. This proof can be
made rigorous for short times.

Remark 1.4. More generally, this is related to control theory, where we try to find

u(x0, T ) = min

∫ T

0
L(x, u) dt + u0(x(0)), ẋ = h(x, f)

Here, we can choose some weight of influence by changing f , and we are trying to optimize
some cost functional. The function u(x0, T ) solves a Hamilton-Jacobi equation.

We can think of our calculus of variations problem as the case where the ODE for x is
given by ẋ = f .

Remark 1.5. Calculus of variations allows us to obtain meaningful solutions for Hamilton-
Jacobi equations after characteristics begin to intersect. Instead of picking which charac-
teristic to continue, we can just look for a minimizer for a calculus of variations problem
in longer time.
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